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Abstract. The regional lockdowns, implemented around the world over 2020-2022 to contain the rapid spread of the novel 

coronavirus disease 2019 (COVID-19), inadvertently created a natural laboratory for investigating the effect of reducing 

anthropogenic emissions on urban air quality in unprecedentedly large temporal and spatial scales. In this study, we analyze 15 

multi-year surface PM2.5 observations in 21 cities around the globe to examine anomaly of daily PM2.5 concentrations during 

major COVID-19 lockdowns with respect to that in the pre-pandemic years. We then use a set of GEOS global aerosol transport 

modeling experiments to disentangle the effect of the lockdown emission reductions from other non-lockdown effects. Our 

analysis shows that no systematic reductions in PM2.5 are found in response to the lockdowns globally. In some locations, we 

find the coincidences of an increasing stringency index and a decreasing of surface PM2.5, which often leads to the record low 20 

of PM2.5 over extensive period. These observations clearly suggest the positive impacts of COVID-19 lockdown-induced 

anthropogenic emission reductions on air quality. In other stations, however, the lockdown’s impacts could be masked by 

differing meteorology and the occurrence of dust and wildfire events. We also found that current satellite remote sensing of 

aerosol optical depth cannot be used to reliably discern the change of surface PM2.5 due to the COVID-19 lockdowns. Results 

of this study provide a preview of potential mixed effects on urban air quality when implementing air pollution control 25 

regulations such as transitioning gasoline and diesel-powered vehicles to electric vehicles. 

1. Introduction 

PM2.5, particulate matter (also referred to aerosol in climate communities) with an aerodynamic diameter of smaller than 2.5 

µm, is one of the major air pollutants that adversely affect human health. Exposure to PM2.5 was ranked as the fifth largest 

contributing factor to global mortality (Cohen et al., 2017). Currently, about 90% of the global population lives in unhealthy 30 

environments where annual PM2.5 concentrations are greater than the guideline of 5 µg m-3 recently issued by the World Health 

Organization (WHO) (Yang et al., 2022). Further, it is estimated that the long-term exposure to ambient PM2.5 might have 

resulted in the premature deaths of 2.9 (1.4 – 4.5) million in 2019, with more than two thirds occurring in Asia (Yang et al., 

2022). Another study has estimated as many as 8.7 million premature deaths per year that can be attributed to the exposure to 
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PM2.5 (McDuffe et al., 2021). Clearly, reducing the primary and precursor emissions of PM2.5 is necessary to improve air 35 

quality and the well-being of citizens. Moreover, emissions reductions should focus on anthropogenic sources because they 

are responsible for most of the mortality attributable to PM2.5 pollution, whereas the natural sources, like dust storms, are 

estimated to cause only about 22% of such mortality (Yang et al., 2022) and are more difficult to control. Purposeful short-

term policy interventions (e.g., the 2008 Beijing Olympics, the 2014 APEC Summit) have yielded improvement of air quality 

at local scales and during the targeted events (W. Wang et al., 2009; X. Wang et al., 2009; Chen et al., 2013; Liu and Ogunc, 40 

2023). However, it is also revealed that such local-scale emission controls could be compensated by increases of emissions in 

surrounding areas, highlighting the importance of regional emission controls in achieving improved air quality in a city (Wang 

et al., 2010).  Previous studies that carried out global model experiments have shown potentially significant albeit highly 

uncertain effects of a hypothetical and uniform 20% reduction of global anthropogenic emissions on air quality, climate, and 

ecosystems at local, regional, and intercontinental scales (e.g., Shindell et al., 2008; Yu et al., 2013; Collins et al., 2013; 45 

Anenberg et al., 2014).       

The COVID-19 lockdowns created a natural laboratory for studying the effect of reducing anthropogenic activities on urban 

air quality at a global scale and during the extended period. Since the emergence of the novel coronavirus disease 2019 

(COVID-19) in early 2020, governments around the globe had enforced a variety of measures, including regional and national 

lockdowns, to contain rapid spread of the virus and protect the wellness of human beings.  There is no doubt that these 50 

lockdown measures reduced emissions of various anthropogenic pollutants and greenhouse gases. The science community 

promptly seized this opportunity to investigate the changes of air pollution following the lockdowns. Over a short period of 

less than two years since the lockdowns, a large body of studies had already been published (see reviews in Gkatzelis et al., 

2021; Laughner et al., 2021; Saha et al., 2022; Bakola et al., 2022). The examined atmospheric pollutants included nitrogen 

dioxide (NO2), PM2.5, and ozone (O3), among others. In general, effects of the COVID-19 lockdown have been derived in the 55 

previous studies by comparing concentrations of air pollutants during the lockdown period against those immediately prior to 

the lockdown (e.g., Shi and Brasseur, 2020) or against the climatology during the same period in pre-pandemic years (e.g., 

Venter et al., 2020). Modeling studies driven by the reduced emissions caused by the COVID-19 lockdowns have also been 

performed (Miyazaki et al., 2020; Le et al., 2020). These studies have consistently showed reductions in NO2, a short-lived 

pollutant with a major source from the transportation sector that is considered as a good proxy for emissions, during the 60 

lockdowns (Liu et al., 2020). However, the change of surface ozone concentrations during the lockdowns was reported to 

increase in many locations despite the widespread reduction of its NO2 precursor (e.g., Shi and Brasseur, 2020; Venter et al., 

2020; Shi et al., 2021; Le et al., 2020), although one study found a global scale decline in ozone burden using satellite 

observations (Miyazaki et al., 2021). For PM2.5, the effects of lockdown have showed mixed results (Venter et al.  2020; Shi 

et al., 2021; Volta et al., 2022; Putaud et al., 2023), suggesting the challenge in discerning and quantifying the effects induced 65 

by the reductions of anthropogenic emissions associated with lockdowns. Accounting for the effects of variability of 

meteorological conditions, anthropogenic emission trends, and contributions of natural sources of PM2.5 that is not affected by 

the lockdown is crucial to addressing the challenge and reliably assessing the effect of lockdowns (Gkatzelis et al., 2021; Shi 
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et al., 2021; Le et al., 2020).  Several empirical approaches of de-weathering and de-trending have been used in some previous 

studies. For example, Volta et al. (2022) attempted to account for meteorological impacts on air pollution by classifying 70 

favorable and unfavorable meteorological conditions for air quality and comparing them between the pandemic and pre-

pandemic years. The linear regression of pre-pandemic air quality data has been applied to account for the air pollution trend 

due to clean air policies (Volta et al., 2022). Multivariate regression analysis and machine learning approaches have also been 

used to predict air quality in the pandemic year in a no-lockdown scenario (Venter et al., 2020; Shi et al., 2021; Anderson et 

al., 2021; Ghahremanloo et al., 2022).  75 

The objective of this study is to improve the understanding of COVID-19 lockdowns’ effects on PM2.5 air quality through a 

synergistic analysis of observational data and model simulations. Our study focuses on surface-level PM2.5 because it has the 

most detrimental effect to human health among all the pollutants (Cohen et al., 2017). We hypothesize that the overall 

reductions in anthropogenic emissions from many sectors brought about by the COVID-19 lockdowns would have improved 

the PM2.5 air quality on a global scale. However, such impacts might have been masked by other factors such as meteorological 80 

conditions and natural emissions (e.g., dust storms, wildfires) in the observational datasets.  The impacts might also be 

determined by the relative contributions of individual sectors because some sectors might have increased the emissions during 

lockdowns. To test the hypothesis, we analyze multi-year surface PM2.5 observations in urban areas around the globe to 

examine the potential anomaly of PM2.5 concentrations during the major lockdown periods with respect to that in the pre-

pandemic years. Then we use modeling experiments to disentangle the effect of the lockdown emission reductions from non-85 

lockdown effects. We also investigate if satellite remote sensing measurements of aerosol optical depth (AOD) can be used to 

identify the change of surface PM2.5 due to the COVID-19 lockdowns.  

The rest of paper is organized as follows. In section 2, we provide a brief description of observational and the Goddard Earth 

Observing System (GEOS) modeled datasets (such as PM2.5, AOD) and an auxiliary stringency index for identifying the 

dynamics of the lockdowns around the world. Results of data analysis are presented in Section 3, including the evidence of 90 

coincidence of declining PM2.5 with increasing stringency index, comparisons of observed and modeled changes in PM2.5 in 

2020 in the context of climatology, as well as GEOS-based relative contributions of the lockdown emission reductions and 

non-lockdown factors in explaining the difference between 2020 and 2019. In Section 4, we discuss some remaining issues 

associated with the analysis and an investigation of the feasibility of identifying the lockdown effects on PM2.5 from the satellite 

AOD measurements. Major conclusions are summarized in Section 5.  95 

 

2. Descriptions of observational data and model simulations 

2.1. Observations of surface PM2.5 and aerosol optical depth 

For the surface PM2.5, we use observations collected from the AirNow Department of State network, which include sites at the 

USA diplomatic posts (i.e., Embassies and Consulates) in major cities outside the USA 100 

(https://www.airnow.gov/international/us-embassies-and-consulates/). We selected 17 posts around the world with 
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observations over a period of at least five years, which includes the pandemic years (2020-2022) and at least two pre-pandemic 

years. The number of pre-pandemic years depends on the diplomatic post, as the State Department has been gradually 

extending the PM2.5 monitoring from the diplomatic posts in China to those in India and then other countries. Because most of 

the USA diplomatic posts equipped with multi-year PM2.5 measurements are in East Asia, South Asia, Middle East, South 105 

America, and North Africa, we also included PM2.5 observations in four additional cities from other national air quality 

networks to extend the representativeness of our analysis to North America and Europe. Paris, France and Milano, Italy were 

selected to represent Europe, while New York City, New York and Los Angeles, California were chosen to represent North 

America. Figure 1 illustrates the geographical distribution of 21 urban stations in 13 countries with PM2.5 observations, with 

detailed information (including city and country names, longitude, latitude, and years of data used in the analysis) listed in the 110 

supplement (Table S1).  

 
Figure 1: Geographical distributions of PM2.5 observational stations in 21 cities (open and solid circles, which are 
numbered from 1 to 21) of 13 countries overlying on the GEOS simulated PM2.5 concentrations (colored contours, with 
a unit of µg m-3) in March 2020.  Solid black circles, corresponding to site numbers of 3, 8, 14, 16, 20, and 21, denote 115 
the six cities being selected for in-depth analysis and representative of distinct aerosol characteristics. Detailed 
information about all these cities is listed in Table S1 of the supplement, including city and country names, latitude, 
longitude, and the period of PM2.5 data used in this study.   
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These 21 stations are representative of distinct aerosol characteristics, as shown in Figure 2 for the fractional contributions to 120 

annual mean PM2.5 by an array of source sectors. The source-sector partitions were based on the GEOS-Chem sector sensitivity 

simulations for year 2017 as provided in McDuffie et al. (2021). This modeling used global anthropogenic emission inventory 

for seven key pollutants (NOx, SO2, CO, NH3, NMVOCs, BC, and OC) from 11 anthropogenic sources and four fuel types, 

which was developed from the Community Emissions Data System (CEDS) with updates for the Global Burden of Disease - 

Major Air Pollution Sources project (CEDS_GBD-MAPS) (McDuffie et al., 2020, https://zenodo.org/records/3754964). 125 

Additional emission inputs to GEOS-Chem include those from fires, biogenic sources, and anthropogenic and desert dust, as 

described in the supplementary Table 2 of McDuffie et al. (2021) and references therein. Figure 2 clearly displays that sector 

contributions to PM2.5 vary substantially from station to station. Among the source sectors considered in the GEOS-Chem 

modeling, emissions from energy, industry, transportation, commercial and other combustions, international shipping, and 

anthropogenic fugitive, combustion, and industrial dust (AFCID) might have decreased during the lockdowns due to reduced 130 

human mobility, with magnitudes of decrease likely depending on the specific sector. For brevity, we refer to these six sectors 

collectively as to potential lockdown emission reduction sectors (LERS).  Presumably, the transportation sector had the largest 

reduction in emissions during lockdown. On the other hand, emissions from the residential sector would have increased during 

the pandemic because of the “work/study from home” during the lockdown period that should lead to more extended usage of 

electricity, heating and cooling at home. Natural events like desert dust storms and wildfires were likely unaffected by the 135 

lockdowns, although anthropogenic emission reductions associated with the lockdowns may have impacted dust and fire 

weather to some unquantified extent. An occurrence of such large episodic natural events could even mask the effect of 

anthropogenic emission reductions associated with the lockdowns on PM2.5 air quality. The modeling-based PM2.5 source 

characteristics, albeit inevitably subject to large uncertainties (McDuffie et al., 2021), could facilitate a qualitative 

interpretation of observed changes in PM2.5 in response to the lockdowns discussed in Section 3. In general, when the fractional 140 

contributions by the LERS are high and those by residential sectors are low, the lockdown’s impacts could be more clearly 

shown in observed PM2.5 data. However, when PM2.5 in a city is dominantly sourced from episodic events such as desert dust 

and wildfires, the lockdown’s signals might be masked by these events. 
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Figure 2: Fractional contributions to PM2.5 in 21 stations by source sectors, with a total percentage (%) of the six 145 
lockdown emission reduction sectors (LERS, including energy, industry, transportation, commercial & other 
combustion, AFCID dust, and shipping) denoted to the right of the bar for each station. The chart was made with the 
sector contributions derived from the GEOS-Chem sensitivity simulations for 2017 and provided by the supplementary 
material of McDuffie et al. (2021) and https://zenodo.org/records/4739100. 
 150 

Even with the same emissions, the surface PM2.5 concentrations can vary greatly from day to day because of strong regulation 

by rapidly evolving meteorological and chemical processes. It is oftentimes formidable to discern any meaningful changes in 

PM2.5 during the pandemic years relative to the pre-pandemic years on a daily basis. In this study, we calculate 5-day running 

means of PM2.5 to smooth out high-frequency variations so that potential differences between the pandemic years (2020, 2021, 
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and 2022) and pre-pandemic years (prior to 2020) could show up in the observations more clearly. To obtain quantitative 155 

estimates of PM2.5 changes due to prolonged lockdowns, we also compute the monthly average PM2.5 for both the pandemic 

years and pre-pandemic years.  

AOD observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) on Aqua satellite (Levy et al., 2013) 

were also used in this study. Unlike surface PM2.5 that measures the concentration of air pollution at our nose level, AOD 

measures the load of aerosol in the whole column of the atmosphere. Because of the appealing nature of routine satellite 160 

observations at a global scale, numerous studies have explored the use of satellite AOD to derive surface PM2.5 concentrations 

(e.g., van Donkelaar et al., 2010; Wei et al., 2021). However, the relationship between AOD and PM2.5 is complicated by 

several factors, such as aerosol composition, vertical profile of aerosol, relative humidity of ambient atmosphere, and 

atmospheric long-range transport. In this study, we examine if satellite AOD measurements can be used to detect the change 

in PM2.5 due to the COVID lockdowns. 165 

2.2. GEOS simulations of PM2.5 and AOD 

Simulations from the NASA GEOS model are used for both AOD and PM2.5 in this study. The modular GEOS model is a 

global Earth system model that includes components for atmospheric circulation and composition, ocean circulation and 

biogeochemistry, and land surface processes (Rienecker et al., 2011; Molod et al., 2015). The coupled atmospheric constituent 

module within the GEOS architecture most relevant to this project is an aerosol module based on the Goddard Chemistry 170 

Aerosol Radiation Transport (GOCART) model (Collow et al., 2024). GOCART simulates major components of aerosols 

(with a diameter between 0.02 and 20 µm) and several gaseous precursors, including dust, sea-salt, sulfate, nitrate, organic 

carbon, black carbon, SO2, and dimethyl sulfide (Chin et al., 2002, 2007, 2009, 2014; Ginoux et al., 2001; Bian et al., 2017). 

The model considers the atmospheric processes of chemistry, convection, advection, boundary layer mixing, dry and wet 

deposition, and gravitational settling (Chin et al., 2002, 2014). Aerosol particle sizes are simulated with parameterized 175 

hygroscopic growth, which is a function of ambient relative humidity. Total mass of sulfate and carbonaceous aerosols are 

calculated, while nitrate aerosol mass is calculated in three bins (Bian et al., 2017). For dust and sea salt the particle size 

distribution is explicitly resolved across five size bins (Chin et al., 2002, 2009).  
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For this study, the GEOS model is run at a horizontal resolution of 0.5° for 2019 (pre-pandemic year) and 2020 (the first year 

of the pandemic). The required meteorological fields are taken from the Modern-Era Retrospective analysis for Research and 180 

Applications - version 2 (MERRA2, Gelaro et al., 2017). For 2019, anthropogenic emissions were taken from an updated 

version (V_2021_04_21) of the Community Emission Data System (CEDS) (Hoesly et al., 2018). For 2020, we carry out two 

modeling experiments, denoted as 2020-BAU and 2020-COVID, by using two anthropogenic aerosol and precursor emissions. 

In the 2020-BAU scenario, we used the anthropogenic emissions for 2019 to approximate the business-as-usual (BAU) 

anthropogenic emissions for 2020. In the 2020-COVID scenario, the 2019 anthropogenic emissions from different sectors 185 

were adjusted based on daily mobility data gathered by Apple and Google to reflect the lockdown’s effects on the 

anthropogenic emissions (Foster et al., 2020). Note that in both 2020-BAU and 2020-COVID runs, emissions from desert dust, 

sea-sprays, and wildfires are representative for 2020 conditions; specifically, emissions from wildfires are prescribed based on 

satellite observations in 2020 (Darmenov and da Silva, 2015) and dust and sea-salt emissions are calculated online within the 

GEOS model based on surface and meteorological fields in 2020 from the MERRA-2 analysis (Chin et al., 2014).  190 

One of the advantages of using GEOS modeling is that it provides not only total AOD and PM2.5 but also their composition. 

This allows for distinguishing anthropogenic sources from natural sources (e.g., dust storms, wildfires, volcanic eruption or 

degassing, and sea sprays). In addition to providing the 10-year pre-pandemic climatology of PM2.5 and AOD, the two 

experiments for year 2020 (i.e., 2020-BAU and 2020-COVID) together with the 2019 run can be used to distinguish the effects 

of anthropogenic emission reductions associated with the COVID-19 lockdowns from those associated with differing 195 

meteorological conditions（through affecting aerosol transport and removal processes）as well as effects from emissions of 

natural aerosols, which are not directly related to the lockdowns. For brevity, we refer the differences between 2020-COVID 

and 2020-BAU as the “lockdown effect” whereas the difference between 2020-BAU and 2019 as the “non-lockdown effect” 

that is due to changes in meteorological conditions and natural emissions. These experiments can be used to facilitate the 

interpretation of observed PM2.5 difference between 2020 and 2019. In this study, it is assumed that the differing meteorology 200 

and natural emissions between 2020 and 2019 are not caused by the lockdown-induced anthropogenic emissions.  

2.3. Stringency index measuring the scope of lockdowns 
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The rapid spread of COVID-19 promoted a wide range of government responses in containing the disease and protecting the 

wellness of human beings. The Oxford COVID-19 Government Response Tracker (OxCGRT) project was established to track 

the policy indicators of government responses at national and even state/province levels. The project remained active for most 205 

of the nations tracked until the end of 2022. The OxCGRT provided four composite indices by grouping different families of 

policy indicators, namely the government response index, the stringency index, the containment and health index, and the 

economic support index (Hale et al., 2021). A stringency index, measuring the severity of lockdown restrictions, was developed 

by aggregating nine policy indicators, including school closures, workplace closures, public event cancellations, restrictions 

in gathering size, and travel bans, among others. The index is rescaled to a number between 0 and 100, with 100 being the 210 

most extreme lockdown situation (Hale et al., 2021). In this study, we use the stringency index to identify major lockdown 

periods to facilitate the analysis of change in PM2.5 air quality. Although for 11 stations in China, India, and USA the stringency 

indices were derived from lockdown measures implemented at the state/province level, the stringency indices for other 10 

stations were determined based on national lockdown measures. 

 215 

3. Results 

In this section, we first present a detailed analysis of PM2.5 change in response to the lockdowns on the 5-day running mean 

and monthly mean basis in six populated major cities (marked as filled black dots in Figure 1), namely Shanghai (China), New 

Delhi (India), Los Angeles (USA), Paris (France), Lima (Peru), and Kuwait City (Kuwait). These cities are selected to represent 

broad geographical regions with different aerosol characteristics in terms of source sectors (as shown in Figure 2), which would 220 

determine how PM2.5 levels responded to the COVID-19 lockdowns. Then we interpret the observed changes in PM2.5 in the 

context of regional PM2.5 trends and attribute them to the COVID-lockdown induced anthropogenic emissions reductions and 

the interannual variability of meteorological conditions with the aid of GEOS modeling experiments. Finally, we present a 

general discussion of observed PM2.5 changes during the major lockdown periods in the remaining 15 stations (open circles in 

Figure 1).  225 

3.1. Observed changes in PM2.5 corresponding to COVID lockdowns – Case studies in selected stations. 
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Figures 3-8 display PM2.5 variations in the six stations on the 5-day running mean and monthly mean basis. For each 

monitoring station, shown in the top panel (a) is the time series of stringency index during 2020 – 2022 period, which can be 

used to identify the lockdown periods and facilitate the interpretation of observed PM2.5 variations, whereas shown in panel 

(b) and (c) are the observed time series of 5-day running mean and monthly average of PM2.5, respectively, in pre-pandemic 230 

years prior to 2020 (the number of years depending on available observations at the station) and during the pandemic years of 

2020-2022. The pre-pandemic (2019 and earlier) climatology are represented by the average (black lines) and the range of 

observations (gray vertical bars). We also display the time series in 2019, a year immediately prior to the pandemic, laying the 

ground for a focused analysis of 2020 and 2019 in the next section. Major characteristics of the PM2.5 level in response to the 

COVID-19 lockdowns are detailed in the following. We particularly focus on PM2.5 changes during relatively stringent 235 

lockdown periods, defined in this study as periods with a stringency index > 60. 

3.1.1. Shanghai, China 

Shanghai’s lockdowns began in late January 2020, when its stringency index increased from almost 0 to more than 70 on 

January 27 (day of the year or DOY = 27), as shown by the red line in Figure 3a. Moderately strict lockdown regulations 

continued through the rest of this year, seeing that values for the stringency index remained above 45. The station’s observed 240 

5-day moving average concentrations of PM2.5 in 2020 were generally lower than that in 2019 and other pre-pandemic years. 

There was a sudden drop of the 2020 (red line) average from the pre-pandemic multi-year average (black line) in Figure 3b 

when DOY = 27, and a clear disparity between the two lines continues throughout the year except a period of DOY=196-265 

(mid-July to late-September) Similarly, monthly PM2.5 levels portrayed in Figure 3c from February through December 2020 

were significantly lower than the pre-pandemic averages except July-September when differences became smaller. The most 245 

evident pullback from years preceding the pandemic to 2020 seems to be in March, which was a relative reduction of 55% in 

comparison to the pre-pandemic average. This matches with how Shanghai’s stringency index was at its largest for that year 

from February through May. Thus, it is reasonable to assume that Shanghai’s lockdowns during this time contributed to 

lowering the PM2.5 levels. 

Furthermore, Shanghai’s second major lockdown began around April 2022 that was even stricter than the 2020 lockdown with 250 

the stringency index >90. The blue line in Figure 3a reaches a peak of 97, an almost maximum stringency, and only falls to 
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approximately 60 at the start of June. During these months of regulations triggered by the Chinese government’s zero-COVID 

policy, where rapid lockdowns and mass testing would occur whenever positive cases emerged, and Shanghai’s 26 million 

citizens were mostly confined in their homes (Han et al., 2024). As indicated in Figure 3c, Shanghai’s 2022 monthly PM2.5 

means during April, May, and June 2022 reached record lows, staying well below the means of all past years. In particular, 255 

the April 2022 average was less than the 2012-2019 average by about 35 μg m-3. On the monthly basis, PM2.5 from March to 

May decreased from pre-pandemic means by 43% to 56%. In Figure 3b, 5-day moving averages for 2022 also occasionally 

dipped to historical minimums once in late April and twice in May. It is evident that Shanghai’s unyielding shutdown of 2022 

that practically locked its population indoors had a pronounced impact on PM2.5 levels. 

In summary, the above data analysis shows that the COVID-19 lockdowns reduced the PM2.5 load, consistent with the fact 260 

that 60% of PM2.5 in Shanghai came from those potential LERS (Figure 2) as discussed in section 2.1.   

3.1.2. New Delhi, India  

In New Delhi, it is estimated that about 47% of PM2.5 were sourced from those potential LERS, while residential sector 

accounted for about 27% (Figure 2). Based on the time series in Figure 4a, New Delhi’s government started imposing stricter 

shutdown measures in February of 2020, and went into a full lockdown by mid-March that lasted until the end of May, where 265 

the stringency index hit 100. From June through September 2020, the stringency index gradually decreased yet was always 

above 60, meaning that New Delhi continued moderate COVID-19 regulations for most of the year. Comparing these values 

with the 5-day running means of PM2.5 in Figure 4b, it is likely that the COVID-19 lockdowns had at least some impact on air 

quality in New Delhi. The red line of PM2.5 in 2020 falls under the black line of pre-pandemic (2015-2019) averages from 

around DOY = 90 to DOY = 135, demonstrating lowered PM2.5 in April and part of May, when lockdown measures were at 270 

maximum severeness. The monthly PM2.5 levels for March through May 2020 in Figure 4c were also lower than the 

corresponding 2015-2019 monthly means by 29% to 45%. In the later months of 2020, when shutdown restrictions lessened, 

monthly average PM2.5 concentrations became similar to those in past years. 

In the spring of 2021, New Delhi experienced a second, smaller-scale COVID-19 lockdown. According to the stringency index 

graph, the yellow line representing the city’s index in 2021 up ticked to values between 80 and 100 from DOY = 109 to DOY 275 

= 158. New Delhi’s PM2.5 levels, however, did not have any noticeable decrease or change in the early stages of this timeframe, 
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as the March and April 2021 means were almost the same magnitude as or even higher than the same means of pre-pandemic 

years. But by the end of the lockdown period, the monthly PM2.5 concentration dropped to a record low (October 2021). The 

May 2021 average PM2.5 dropped to as small as the May 2020 mean. Despite this occurrence, there is no strong indication that 

the 2021 lockdown in New Delhi had much influence on air pollution, because the amount of PM2.5 in its atmosphere only 280 

decreased during less than half of the highly stringent period. 

3.1.3. Los Angeles, USA 

For Los Angeles, 58% of PM2.5 in pre-pandemic years were sourced from potential LERS. The reductions in PM2.5 from these 

LERS during the pandemic years might be compensated by an increase associated with the residential sector, which accounted 

for about 17% of pre-pandemic PM2.5. COVID-19 lockdown measures were strictest when the stringency index quickly 285 

elevated to above 80 in mid-March 2020, specifically on DOY = 79, from an initial value of around 20 ten days earlier (Figure 

5a). The index plateaued in the low 80s through April of 2020. In this timespan, PM2.5 concentrations diminished to some 

extent, with the red line of 2020 means remaining under the black line of pre-pandemic means throughout March and the 

beginning of April (Figure 5b). Moreover, we show in Figure 5c that March 2020 and April 2020 PM2.5 averages were smaller 

than their pre-pandemic counterparts by 47% and 32%. 290 

Several steep spikes in 5-day moving averages of PM2.5 levels also occurred in the 2020 summer and autumn (Figure 5b), due 

to the extreme wildfires that struck California that year, which burned about 4.3 million acres of land total, a number twice the 

state’s previous record (Safford et al., 2022). 

3.1.4. Paris, France   

Paris experienced lockdowns induced by COVID-19 in 2020 and 2021. In 2020, the city’s stringency index reached 88 at DOY 295 

= 77 (mid-March) and stayed at a similar level until around DOY = 131 (mid-May) in Figure 6a. Interestingly, the PM2.5 level 

hit the record low in many days in February, prior to the lockdown (Figure 6b).  For the rest of the year, the 5-day moving 

average of the PM2.5 level stayed below the 2013-2019 mean for most days, although it became closer to the 2019 level 

starting from July after the lockdown measures were eased. For the monthly averages in Figure 6c, PM2.5 values in March and 

April 2020 decreased from the 2013-2019 means by approximately 43% and 13%, respectively, although it is noticed that the 300 

PM2.5 in February (before lockdown) was the lowest in the entire year. Unlike other sites discussed earlier in this essay, the 
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PM2.5 levels in Paris rarely hit record lows during lockdowns, even though they are near the bottom of the range from pre-

pandemic years.  

Another less rigid lockdown for Paris went into place during January to mid-May of 2021, where the stringency index lay 

between 60 and 80. This time, the PM2.5 concentrations were also lower than the pre-pandemic values (except April) but higher 305 

than in 2020. This is more clearly seen in the monthly means, as the PM2.5 in 2021 from January to May are lower than the 

same months before the pandemic but are higher than 2020 except May, apparently consistent with the different degrees of the 

stringency between 2020 and 2021, although such attribution might be ambiguous.   

3.1.5. Lima, Peru 

Lima’s most strict lockdown occurred mid-March through June of 2020, as seen in Figure 7a. In these nearly four months, the 310 

stringency index ranged from 90 to 97, a sign of extremely tight lockdown measures. Evidently, in Figure 7b, the PM2.5 levels 

for 2020 fell well below 2016-2019 amounts during the exact same period. Monthly averages of PM2.5 in Lima rendered by 

Figure 7c were also significantly diminished in March to June of 2020, where concentrations consistently were lower than pre-

pandemic averages by 47% to 54%. Since the timings of declines in PM2.5 matched with the timings of escalated stringency 

indices, it seems to present a line of strong evidence that the reduction of human activities had direct impact on lowering the 315 

PM2.5 levels in Lima. Such effects are more clearly seen in the monthly mean PM2.5 in Figure 7c that the 2020 values are lower 

than the pre-pandemic years throughout the year with the largest reduction in the months with highest stringency index. 

In contrast, the lockdown measures in 2021 did not seem to help reducing the PM2.5 in Lima despite the still high stringency 

index (around 60) throughout the year. The PM2.5 levels in 2021 were very similar to the pre-pandemic values, although they 

were noticeably lower by 6.5 and 10.3 μg m-3 (corresponding to 30% and 41%) in February and March of 2021 respectively 320 

(Figure 7b and 7c) when the stringency index was higher (~70-75).  

3.1.6. Kuwait City, Kuwait  

During April, May, June, and July of 2020, Kuwait City’s stringency index enlarged to values between 80 and nearly 100 

(Figure 8a). Despite this severe lockdown, there were not many apparent signs of change in PM2.5 concentrations in the spring 

and summer of 2020, which often surpassed pre-pandemic concentrations and occasionally fell to record lows. Figure 8b’s red 325 

line for PM2.5 5-day moving averages in 2020 does reach minimums under the black line of pre-pandemic averages at points 
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in mid-April and early May, and monthly means in Figure 8c for March and April 2020 were less than their complementary 

2017-2019 means by 13% to 40%. Nonetheless, the concentration of PM2.5 in 2020 in general were well within the range of 

pre-pandemic years. In 2021, although the stringency index remained above 60 from January to July, the PM2.5 levels did not 

respond to the stringency measures (Figure 8b and 8c). These levels hit the record low in August-October despite the relaxed 330 

stringency. 

It should be noted that Kuwait City is heavily influenced by desert dust, which was not affected by the lockdown. Therefore, 

it is expected that dust frequently plays a determining role in PM2.5 levels in Kuwait City. This is most evident in 2022 (blue 

lines in Figures 8b and 8c) when the PM2.5 concentrations were pulsed and abnormally large with the May average being close 

to twice as high as the mean for May from pre-pandemic years. The heavy dust storms that occurred in late May across the 335 

Middle East in that year (Francis et al., 2023) are a probable explanation for this growth. It is logical to assume then, that this 

event is proof of how the presence of dust storms can have a magnified effect on the overall levels of PM2.5 in Kuwait City, 

which would overwhelm changes due to other influences like COVID-19 lockdowns, in observational data. 
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Figure 3: Time series of (a) the lockdown stringency index during the pandemic years (2020 - red, 2021 - orange, and 340 
2022 - blue) and (b) the 5-day running mean PM2.5 concentration over years for four individual years of 2019-2022 
(with brown, red, orange, and blue line denotes 2019, 2020, 2021, and 2022, respectively) in Shanghai, China. The 
monthly average PM2.5 concentrations (μg m-3) are shown in (c). Also shown in (b) and (c) is the pre-pandemic 
climatology with black line denoting the average and gray shaded areas the range of observations during the pre-
pandemic period. 345 
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Figure 4: Same as Figure 3, except for New Delhi, India.  

 

 

 

 
 

0

20

40

60

80

100

120

1 31 61 91 121 151 181 211 241 271 301 331 361

St
ri

ng
en

cy
 In

de
x

Day of Year

(a) New Delhi Stringency Index
2020 2021 2022

0

100

200

300

400

500

600

700

1 31 61 91 121 151 181 211 241 271 301 331 361

PM
2.

5 
(u

g/
m

^3
)

Day of Year

(b) New Delhi PM2.5 Time Series 
2019 2020 2021 2022 2015-2019

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10 11 12

PM
2.

5 
(u

g/
m

^3
)

Month

(c) New Delhi monthly PM2.5 

2019 2020 2021 2022 2015-2019

https://doi.org/10.5194/egusphere-2025-1750
Preprint. Discussion started: 25 April 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

 350 

Figure 5: Same as Figure 3 except for Los Angeles, USA. 
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Figure 6: Same as Figure 3, except for Paris, France. 
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Figure 7: Same as Figure 3, except for Lima, Peru. 
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Figure 8: Same as Figure 3, except for Kuwait City, Kuwait. 
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 365 
3.2. Attribution of the observed changes in PM2.5 between the pandemic and pre-pandemic years 

In this section, we attempt to interpret the observed changes in PM2.5 by carrying out additional analyses of in-situ PM2.5 

observations and GEOS model simulations to address two major questions: (1) are the observed changes in PM2.5 during the 

lockdowns coincident with the regional PM2.5 trends? (2) what are the relative contributions of the COVID-lockdown induced 

anthropogenic emission reductions, interannual variability of meteorology, and natural emissions to the PM2.5 changes during 370 

the pandemic?  

3.2.1. Inferring the Lockdowns’ impacts in the context of regional PM2.5 trends 

The analysis in section 3.1 showed that on a monthly basis, PM2.5 in 2020 during the lockdown periods was systematically 

lower than the pre-pandemic averages in six cities except at locations significantly affected by wildfires and dust storms. In 

some cities, the 2020 PM2.5 concentrations even made it to record lows in the study periods. However, these reductions in 375 

PM2.5 during the pandemic may not be simply credited to the effects of COVID-19 lockdowns. For instance, if PM2.5 level in 

a city had been declining before the pandemic, an apparent decrease in PM2.5 observed in 2020 might be just following the 

trend in a business-as-usual scenario. It is thus necessary to put them in the context of regional PM2.5 interannual variations or 

trends to reduce ambiguity in attributing the observed PM2.5 reductions to the lockdown impacts.  

Here we investigate the March-April average PM2.5 concentrations in pre-pandemic years (black dots) and during the pandemic 380 

years (red triangles) for all six cities, as shown in Figure 9. We restricted the period to March and April because this was when 

the first wave of lockdowns occurred at most of the cities in 2020. These plots also contain standard deviations and linear 

regression lines (black lines) of the data for all years up until 2019 (i.e., excluding the pandemic years 2020-2022). The 

coefficients of determination, R2, of the linear regressions for Shanghai, Paris, Lima, and Kuwait City, are between 0.739 and 

0.907, implying that there are generally statistically significant decreasing trends for these sites’ PM2.5. Contrary to the other 385 

four locations, PM2.5 levels in New Delhi and Los Angeles contained no meaningful trends, as R2 values for both sets of data 

points are 0.1 or less. The linear regression lines based on the pre-pandemic PM2.5 observations are then extrapolated to later 

years as an estimation of PM2.5 under a BAU scenario in 2020-2022 without COVID-19 lockdown. A deviation of observed 

PM2.5 levels during the pandemic years from the predicted values is compared with the pre-pandemic standard deviation to 

assess the likelihood of influences by the COVID-19 lockdown. For Shanghai, the deviation of observed PM2.5 from the 390 
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predicted value is -13.73, -7.07, and -9.94 μg m-3 for 2020, 2021, and 2022, respectively. For comparison, the pre-pandemic 

standard deviation is 7.33 μg m-3. This suggests that emission decreased associated with Shanghai’s stringent pandemic 

restrictions most likely have caused significant reductions of PM2.5 in 2020 and 2022.   Similarly, the deviation from the 

predicted value in 2020 is -30.94, -5.44, and -6.38 μg m-3 in New Delhi, Los Angeles, and Lima, respectively. These deviations 

are significantly greater than the corresponding pre-pandemic standard deviations of 6.81, 2.58, and 3.89 μg m-3, most likely 395 

suggesting that the COVID-19 lockdowns in 2020 caused significant reduction of PM2.5 in New Delhi, Los Angeles, and 

Lima. On the other hand, 2020’s PM2.5 levels in Paris and Kuwait City were above the regression line by 2.55 and 4.12 μg m-

3, respectively,  despite being lower than pre-pandemic averages. In these cases, external causes may have offset any impacts 

of reduced anthropogenic emissions during COVID-19 lockdowns.  

Notably, in March-April of 2021 and 2022, all six cities except for Shanghai demonstrated upticks in PM2.5 concentration to a 400 

level near or well above the BAU projection. Shanghai’s PM2.5 increased in 2021 but decreased again in 2022 due to the second 

stringent lockdown discussed earlier. The PM2.5 concentration in 2022 was even lower than that in 2020. The question of how 

much the loosening of COVID-19 pandemic regulations truly contributed to these increases in PM2.5 requires further 

investigation, but so far, there is some evidence of elements besides the lockdown stringency, such as the dust storms in Kuwait 

City, playing a role as well. 405 
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Figure 9: Interannual variations of the March-April average PM2.5 (μg m-3) in (a) Shanghai, (b) New Delhi, (c) Los 
Angeles, (d) Paris, (e) Lima, and (f) Kuwait City. Black dots indicate pre-pandemic years and red dots for the pandemic 
years. Black line represents a linear regression of PM2.5 for pre-pandemic years only (excluding data points in the 
pandemic years), which is used to predict the business-as-usual (BAU) PM2.5 during the pandemic years. R2 and pre-410 
pandemic standard deviation (s) is noted in the box. Red triangles indicate average PM2.5 in the pandemic years. 
 
3.2.2.   Attributing the observed PM2.5 changes to the lockdown-induced emission reductions with GEOS modeling  

In this section, we focus on an analysis of the observed and modeled changes in March-April average PM2.5 concentration 

between 2020 and 2019. This focused analysis is done based on the three GEOS model experimental runs (as described earlier) 415 
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to  provide insight into how the observed PM2.5 changes are related to the anthropogenic emission reductions associated with 

the COVID-lockdowns and differing meteorology/natural emissions. The three GEOS runs for 2019, 2020-BAU, and 2020-

COVID are compared against each other to distinguish a change associated the lockdowns (i.e., reductions in anthropogenic 

emissions) from those non-lockdown effects (e.g., interannual variations in meteorological conditions and natural emissions). 

Specifically, the difference between 2020-BAU and 2019 indicates the effect of differing meteorology and natural emissions 420 

between 2020 and 2019, as the same anthropogenic emissions were applied in these two runs. On the other hand, the difference 

between 2020-COVID and 2020-BAU measures the effect of reducing anthropogenic emissions by the lockdown restrictions, 

as the two runs were driven by the same meteorology and emissions of natural aerosols from dust storms, sea sprays, 

biogenic/volcanic sources, and wildfires were largely the same. These simple attributions are insightful, although the so-

derived lockdown effects and those by the differing meteorology and natural emissions (i.e., non-lockdown effects) may not 425 

add up exactly to the reduction in PM2.5 due to the nonlinearity of aerosol system.  

Table 1 lists the relative changes (%) of anthropogenic SO2, NH3, BC, and OC emissions in the six cities due to implementation 

of the lockdowns, on a basis of March-April average (annual cycles of BAU and COVID emissions are shown in the 

supplement, Figures S3-S8). While the anthropogenic emissions generally decreased because of the lockdowns by a large 

range of magnitudes (-2.1% to -45.9%) depending on locations and species, OC in New Delhi increased slightly by +1.5%. 430 

Our analysis shows that the increase of OC in New Delhi (and other cities in India) came from the increase of OC in residential 

sector, presumably due to the large share of biofuel uses in residential cooking that increased significantly during the 

lockdowns. 

Table 1: Relative change (%) of March-April average anthropogenic SO2, NH3, BC, and OC emissions 
averaged over 3°x3° box around the cities due to COVID lockdowns. Negative value indicates a decrease of 
emission due to the lockdowns.  
City, Country SO2 NH3 BC OC 
Shanghai, China -16.1 -11.7 -14.4 -10.4 
New Delhi, India -28.2 -12.3 -2.1 +1.5 
Los Angeles, USA -26.3 -16.4 -27.7 -19.2 
Paris, France -34.3 -6.8 -27.0 -5.3 
Lima, Peru -45.9 -11.1 -28.9 -10.5 
Kuwait City, Kuwait -9.3 -8.1 -23.3 -21.1 

 

 435 
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Figure 10 shows the observed and modeled PM2.5 changes (2020-2019) as well as the GEOS attributions of bulk PM2.5 changes 

into different aerosol components and into the lockdown and meteorological/natural effects. For brevity, we group the GEOS 

aerosol components into four broad groups, namely inorganic aerosols (including sulfate, ammonia, and nitrate), carbonaceous 

aerosols (including organic matter, black carbon, and brown carbon), dust, and sea-salt. Relative changes in total PM2.5 between 

2020 and 2019 derived from both the observations and GEOS simulations are listed in Table 2. Major features for the 440 

individual cities are summarized in the following: 

Shanghai, China: The observations show that PM2.5 in 2020 was 19.5 µg m-3 or 41.4% lower than that observed in 2019.  In 

comparison, GEOS model shows a smaller reduction of PM2.5 in 2020, i.e., 12.2 µg m-3 or 18.4% (with respect to the modeled 

value), of which 7.5% is due to the lockdown-induced reduction in anthropogenic emissions and 11.8% due to the differing 

meteorology and natural emissions. Analysis of aerosol composition further shows that carbonaceous PM2.5 made a larger 445 

contribution to the reduction of PM2.5 than inorganic PM2.5 did for both the lockdown-induced emissions reduction and the 

differing meteorology and natural emissions. 

 

Table 2: March-April average PM2.5 in 2019 and relative change (%) of PM2.5 between 2020 and 2019 derived 
from the observations and GEOS simulations. Negative values indicate that PM2.5 was smaller in 2020 than 
2019. The relative changes of 2020_COVID vs 2020_BAU and 2020_BAU vs 2019 represent contributions of 
the lockdown-induced anthropogenic emission reductions and the differing meteorology, respectively.  
City, Country Observed PM2.5 GEOS-simulated PM2.5 

2019 (µg 
m-3) 

2020 vs 
2019 (%) 

2019 (µg 
m-3) 

2020_COVID vs 
2019 (%) 

2020_COVID vs 
2020_BAU (%) 

2020_BAU vs 
2019 (%) 

Shanghai, 
China 47.2 -41.4 66.3 -18.4 -7.5 -11.8 

New Delhi, 
India 73.6 -36.2 48.3 -7.7 -3.2 -4.6 

Los Angeles, 
USA 12.9 -18.4 7.2 -3.0 -8.2 +5.7 

Paris, France 15.5 -17.5 9.8 -8.0 -5.1 -3.0 
Lima, Peru 21.2 -36.3 15.5 -26.7 -16.7 -12.1 
Kuwait City, 
Kuwait 34.7 -3.8 83.3 -5.6 -2.0 -3.7 
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 450 

Figure 10: Absolute differences (µg m-3) in March-April average PM2.5 between 2020 and 2019 (a negative value 
indicating that PM2.5 was smaller in 2020 than 2019) in Shanghai, China (a), New Delhi, India (b), Los Angeles, USA 
(c), Paris, France (d), Lima, Peru (e), and Kuwait City, Kuwait (f). Shown here include observed (yellow bars) and 
GEOS simulated (blue bars) changes in total PM2.5. The GEOS simulations are further classified into dust, inorganic 
aerosol, carbonaceous aerosol, and sea salt, shown below the total PM2.5 change. For both total and component PM2.5, 455 
GEOS simulation is partitioned into GEOS PM2.5 change due to anthropogenic emission change (orange) and GEOS 
PM2.5 change due to differing meteorology (gray). Relative changes in PM2.5 are listed in Table 2. 
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New Delhi, India: The observed PM2.5 in 2020 was about 27 µg m-3 or 36.2% smaller than that in 2019. GEOS model predicted 

a much smaller reduction of 4 µg m-3 or 7.7% in 2020. The model also suggests that the differing meteorology and natural 460 

emissions (e.g., carbonaceous aerosol from wildfires and dust driven by meteorology) constitutes of about the 4.6% reduction, 

while the lockdown-induced reduction in anthropogenic inorganic emissions for the 3.2% reduction.     

Los Angeles, USA: Observed PM2.5 in 2020 was lower than that in 2019 by 2.4 µg m-3 or 18.4%. In comparison, the GEOS 

predicted a much smaller reduction of only 0.2 µg m-3 or 3%. However, the 3% reduction in PM2.5 is a balance of the 8.2% 

reduction in both inorganic and carbonaceous aerosols associated with the lockdown and the 5.7% increase in inorganic aerosol 465 

and sea salt due to differing meteorology. Dust and carbonaceous aerosol had much smaller increases, compared to inorganic 

aerosol and sea salt. 

Paris, France: Although observed PM2.5 decreased by 2.7 µg m-3 or 17.5% from 2019 to 2020, GEOS model only predicted a 

reduction of 0.8 µg m-3 or 8%. Further analysis of GEOS modeling experiments shows that the reduction of anthropogenic 

emissions due to the lockdowns contributed to a 5.1% reduction in PM2.5, which is evenly contributed by inorganic and 470 

carbonaceous PM2.5. Due to the differing meteorology between 2020 and 2019, dust PM2.5 increased by 0.2 µg m-3 while sea-

salt PM2.5 decreased by 0.5 µg m-3. An increase of 0.3 µg m-3 in carbonaceous PM2.5 was presumably due to increased wildfire 

emissions. However, differing meteorology reduced the formation of inorganic PM2.5 by 0.3 µg m-3 in 2020.    

Lima, Peru: PM2.5 was observed to decrease by 7.5 µg m-3 or 36.3% in 2020. In comparison, the GEOS modeling predicted a 

relatively smaller reduction of 26.7% in PM2.5. Further analysis shows that the lockdown-induced anthropogenic emission 475 

reduction yielded a 16.7% reduction in PM2.5, with more reduction in inorganic than carbonaceous aerosol. The differing 

meteorology affected inorganic and carbonaceous PM2.5 by a similar amount, which collectively contributed to the 12.7% 

reduction in total PM2.5. 

Kuwait City, Kuwait:  Different from the five cities discussed above, the observed reduction of 1.4 µg m-3 in PM2.5 in 2020 

is smaller than the GEOS simulated reduction of 4.7µg m-3 by more than a factor of 3. However, due to GEOS model 480 

overestimated PM2.5 in 2019 by more than a factor of 2, the relative reduction is 3.8% and 5.6% for the observation and GEOS 

model respectively. Furthermore, the GEOS model suggests that the reduction of 2.0% associated with the lockdowns is 

smaller than the 3.7% reduction due to the differing meteorology. The lockdown-induced reduction in inorganic PM2.5 is more 
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than a factor of two larger than that in carbonaceous PM2.5. One can also notice that dust PM2.5 had a small reduction caused 

by the lockdown-induced anthropogenic emissions reduction, which might be attributed to the dynamic aerosol-radiation 485 

interactions accounted for in the GEOS simulations that affected both emissions and transport of dust. The differing 

meteorology in 2020 caused the reduction of dust PM2.5 by 6.5 µg m-3, but an increase of 2.6 µg m-3 in inorganic PM2.5 followed 

by an increase of 0.4 µg m-3 in carbonaceous PM2.5. 

In summary, the GEOS modeling experiments show that both the lockdowns and the differing meteorology as well as natural 

emissions contribute to the PM2.5 reduction in 2020, in comparison to that in 2019. In Shanghai, New Delhi, and Kuwait City, 490 

the differing meteorology and natural emissions made a larger contribution to the PM2.5 reduction than the lockdowns did. On 

the other hand, the lockdown effects in Los Angeles, Paris, and Lima were larger than that due to the differing meteorology 

and natural emissions. Clearly, for all cities the effects of the differing meteorology and natural emissions need to be considered 

when interpreting and attributing the observed PM2.5 reduction in 2020 to the lockdown induced reductions in anthropogenic 

emissions.   495 

3.3. Observed changes in PM2.5 during the major lockdown period in other cities. 

In previous sections, we have presented a detailed analysis in the six representative cities about the responses of surface PM2.5 

to the lockdowns marked by the stringency index as well as to the meteorological conditions and natural aerosol events. 

Although similar analysis has been performed for all the cities, for the sake of brevity here we only present monthly PM2.5 

during and prior to the pandemic years for other 16 sites in 15 cities (Jakarta South and Central sites are presented separately), 500 

as shown in Figures 11-12.  When examining these plots along with the stringency index of lockdowns (Figures S1 and S2), 

we observe that eight cities in Figure 11 show the reduced monthly PM2.5 in correspondence to the elevation of stringency 

index. These cities are in China, India, and United States. For those in China, the high stringency index was recorded not only 

in early 2020 (February – April) but also in March-October of 2022.  On the contrary, the cities in Figure 12 generally do not 

show a clear decrease in monthly PM2.5 corresponding to the lockdowns. When further looking into the source attributions of 505 

PM2.5 in individual cities (Figure 2), we notice that those cities showing the reduced PM2.5 in correspondence to the lockdowns 

generally have a higher contribution (e.g., >47%) from the LERS, a much smaller fraction (16-27%) for residential sources, 

and no significant contribution (<6%) from episodic events such as dust storms. On the contrary, those cities without displaying 
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a decrease in PM2.5 corresponding to the high stringency index have a lower LERS contribution (e.g., <40%) and a relatively 

higher contribution (20-50%) by the residential sector (Jakarta and Hanoi, in particular), or the predominance of desert dust 510 

(e.g., Dubai, Manama, and Addis Ababa). It is necessary to note that extremely high PM2.5 in spring and summer of 2022 in 

Dubai may suggest a potential problem associated with the measurements in this station. Although high dust events occurred 

frequently in the region in 2022 (Francis et al., 2023), Manama and Kuwait City in the region did not record as high PM2.5 as 

that in Dubai.  

In summary, our analysis shows that there were no systematic reductions in PM2.5 in response to the reduced human mobility 515 

due to the implementation of lockdown measures. In some urban areas, the coincidences of decreasing PM2.5 and increasing 

stringency index strongly suggest the impact of COVID-lockdowns on improving air quality. In fact, the lockdowns yielded a 

historic low PM2.5 level in several cities. In other urban areas, there was no reduction of PM2.5 in response to the lockdown, 

suggesting that the impact of lockdowns could have been compounded with other factors such as meteorological conditions 

and natural emissions (desert dust and wildfire smoke) to some extent. Our analysis also manifests the importance of PM2.5 520 

source attributions in determining how the level of PM2.5 responds to the lockdowns. When the energy, industry, transportation, 

commercial and other combustions, AFCID (anthropogenic fugitive, combustion, and industrial dust), and international 

shipping sectors are major attributors of PM2.5, it would be easier to detect the PM2.5 reduction in response to the lockdowns. 

On the other hand, when residential sector and/or natural emissions such as dust or wildfires are major contributors of PM2.5, 

the response of PM2.5 to the lockdowns might be masked out and even an increase of PM2.5 could occur during the lockdown 525 

periods. Finally, it is important to bear in mind that even for those cities with the lowest level of PM2.5 in the recent decade 

occurred during the COVID-19 lockdowns, the observed PM2.5 reductions should not be attributed fully to the lockdowns. The 

variability in meteorological conditions and natural emissions might have made sizable contributions. 

 

 530 

 

 

 

 

 535 
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Figure 11: Monthly variations of PM2.5 concentration in 2019 (brown), 2020 (red), 2021 (orange), 2022 (blue), and the 
pre-pandemic climatology (with black line denoting the average and gray shaded areas the range of observations during 
the pre-pandemic period) in Beijing, Shenyang, Guangzhou, Chennai, Hyderabad, Kolkata, Mumbai, and New York 540 
City. The time series of stringency index for these cities are shown in Figure S1. 
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 545 

 
Figure 12: Monthly variations of PM2.5 concentration in 2019 (brown), 2020 (red), 2021 (orange), 2022 (blue), and the 
pre-pandemic climatology (with black line denoting the average and gray shaded areas the range of observations during 
the pre-pandemic period) in Milano, Pristina, Hanoi, Jakarta (central and south), Addis Ababa, Dubai, and Manama. 
The time series of stringency index for these cities are shown in Figure S2. 550 
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4. Discussion 

4.1. Can satellite observations of AOD be used to detect surface PM2.5 changes in response to the lockdowns? 

The ground-based observations of PM2.5 are inherently limited in spatial coverage. Numerous studies have explored the use of 

satellite observations of AOD to estimate the surface PM2.5 that can fill the spatial gaps of surface based PM2.5 measurements 555 

(van Donkelaar et al., 2010; Wei et al., 2021).  Satellite remote sensing is appealing in this regard because it provides routine 

observations of AOD on a global scale and over a multi-year or even multi-decade time scale. Can such satellite remote sensing 

observations be used to discern the lockdowns’ impacts on surface PM2.5? To answer this question, we sample MODIS/Aqua 

AOD over the 21 cities in 2019 (a pre-pandemic year) and 2020 (the pandemic year). We then calculate the relative changes 

of March-April average AOD values between 2020 and 2019 as follows:  560 

𝐴𝑂𝐷	𝑐ℎ𝑎𝑛𝑔𝑒	(%) = 	
𝐴𝑂𝐷!"!" − 𝐴𝑂𝐷!"#$

𝐴𝑂𝐷!"#$
	× 100% 

The relative changes of observed March-April average PM2.5 at the location of the same sites are calculated with similar 

methodology. From the modeling perspective, we compute the relative changes of AOD and PM2.5 based on GEOS simulations 

for 2019 and 2020 (for the COVID scenario, namely 2020-COVID, as discussed earlier).  

Figure 13 compares the relative changes of AOD and PM2.5 in March-April from 2019 to 2020 over the 21 cites from both 565 

observational (left panel) and modeling (right panel). The observations show that in half (10) of those 20 cities (excluding 

Hanoi because of the lack of PM2.5 data in March and April of 2019) where the changes of AOD and PM2.5 are in the same 

directions. In the other half the changes are opposite. On the other hand, the GEOS model shows a majority (17) of the 20 

cities having the same directions of AOD and PM2.5 changes. Quantitatively, AOD and PM2.5 changes can differ substantially 

for both observations and modeling, depending on cities. This presumably reflects the complexity of local/regional aerosol 570 

sources including both anthropogenic and natural, transported amount, and their dependance on altitudes. Our analysis suggests 

that satellite AOD, despite its great advantage in spatial and temporal sampling, cannot always be used to detect changes in 

surface PM2.5 quantitatively (e.g., percentage of change) or even qualitatively (e.g., direction of change). Previous studies using 

satellite AOD measurements for detecting or inferring the COVID-lockdown’s impacts on PM2.5 air quality need to be 

reassessed. There is also a possibility that MODIS AOD is subject to large uncertainties (e.g.,15-20% at least), particularly in 575 

urban areas where the surface is bright and highly heterogeneous (Levy et al., 2013). It is understandable that when the AOD 
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uncertainty in satellite remote sensing is comparable to or larger than the interannual variability, the value of using satellite 

remote sensing product for discerning the changes is greatly reduced.   

 
 580 

Figure 13: Relative changes (%) of March-April average PM2.5 and AOD between 2020 and 2019 in 20 stations based 
on the observations (left panel) and GEOS simulations (right panel). 
 

4.2. Discrepancies in PM2.5 changes between observations and GEOS simulations. 

To use the GEOS modeling for attributing the observed changes in PM2.5 to different factors, it requires that the GEOS 585 

simulations and observational data are at least consistent in the direction of PM2.5 changes. This fundamental requirement was 

met for the six stations discussed in section 3.2.2, albeit the magnitude of the changes in the GEOS results was smaller than 

observed. Here we examine observation-model discrepancies in the PM2.5 changes for 20 stations, as shown in Figure 14, both 

for absolute (left panel) and relative (right panel) changes in the March-April average PM2.5 concentration (i.e., 2020 minus 

2019). Note again that the Hanoi/Vietnam station was excluded because it did not have PM2.5 observations in March-April 590 

2019. We found that 17 out of 20 stations show consistent directional changes in PM2.5 concentration between observations 

and GEOS simulations. Of these, 13 stations had negative differences (2020 lower than 2019) and four stations had positive 

differences (2020 higher than 2019). Opposite changes in PM2.5 between the observations and GEOS modeling were found in 
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the remaining three stations, namely Guangzhou/China, Chennai/India, Jakarta/Indonesia. We defer these three stations to 

further investigation in the future to understand the model-observation disparities. Quantitatively, the observation-model 595 

disparity can be substantial, depending on stations. For all the stations the relative changes in the observed PM2.5 between 2020 

and 2019 range from -41.4% to +21.0%, while the GEOS modeling gives a relatively smaller range of -25.2% to +10.6%. To 

better explain the observed PM2.5 changes with the model simulations, future research is needed to improve the model’s 

performance. One of such endeavors is to improve the accuracy of emission inventories, particularly the relative importance 

of individual source sectors. The estimated emission reduction used in the GEOS model simulation was obtained by applying 600 

the adjustment factors to the 2019 emission based on preliminary, incomplete information from the Apple/Google mobility 

data, which could have large uncertainties. The newly released CEDS emission that covers the emission inventory during the 

COVID years is expected to be more accurate for use in the model for future studies. 

 

Figure 14: Changes in PM2.5 concentration (March-April average, 2020 minus 2019) from the observations (orange 605 
bars) and GEOS simulations (blue bars) in 20 stations. Left panel is for absolute change in PM2.5 (µg m-3) and right 
panel for relative change (%). 
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5. Conclusion 

Our analysis of multi-year surface PM2.5 observations in 21 cities around the globe shows that reductions in PM2.5 did not occur 610 

systematically in all the cities in response to the reduced human activities due to the implementation of COVID-19 lockdown 

measures. In some cities, the decreasing PM2.5 was coincident with the increasing stringency index and yielded a historic record 

of low PM2.5 level, strongly suggesting the impact of COVID-lockdowns on improving the air quality. On the contrary, in 

other cities there was no reduction of PM2.5 in response to the lockdown, suggesting that the positive impact of lockdown-

induced emission reductions on air quality could have been compounded with other factors such as meteorological conditions 615 

and emissions/transport of desert dust and wildfire smoke. Our analysis also suggests that the PM2.5 source attributions 

determine how the level of PM2.5 responds to the lockdowns. When the potential LERS such as the energy, industry, 

transportation, combustions, AFCID, and shipping sectors predominates over the residential sector, it was easier to detect the 

PM2.5 reduction in response to the lockdowns. On the other hand, when residential sector and/or natural emissions such as dust 

storms and wildfires were more important contributors of PM2.5 than those potential LERS, the response of PM2.5 to the 620 

lockdown-induced anthropogenic emission reductions might be masked out and even an increase of PM2.5 could occur during 

the lockdown. This manifests the importance of PM2.5 source attributions in developing effective pollution control strategies 

for improving the air quality. Results of this study provides a preview of potential mixed effects on urban air quality when 

transitioning gasoline and diesel-powered vehicles to electric vehicles.  

Even for those cities with the lowest level of PM2.5 in the recent decade that was coincident with the elevation of stringency 625 

index, the observed PM2.5 reductions should not be attributed fully to the lockdowns. The non-lockdown effect resulting from 

variabilities in meteorological conditions and natural emissions might have made sizable contributions. The analysis of GEOS 

modeling experiments suggests that effects other than anthropogenic emissions were significant and could well exceed the 

lockdown effect in some cases.  

Our analysis also suggests that the GEOS model is still subject to large uncertainties and cannot be used to reliably attribute 630 

the observed PM2.5 changes to anthropogenic emissions, natural emissions, and meteorological conditions. The model and 

observation show disparities in quantitative change in PM2.5. In some cases, the direction of change in PM2.5 can be opposite 
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between the model and observations, which makes it impossible to use the model to interpret the observations. This manifests 

the importance of continuous efforts on improving modeling performance in general and the source apportionments of PM2.5 

particularly. The change of anthropogenic emissions in each sector during COVID is subject to large uncertainties, and the 635 

model results shown here should be considered more as a “sensitivity” study. When the gridded CEDS 2024 release is prepared, 

we could rerun the model for a more systematic assessment. 

Despite the advantage of satellite remote sensing in terms of routine daily sampling over decadal time spans, using AOD 

observations from satellites cannot always detect the impacts of COVID-19 lockdowns on the PM2.5 air quality and even the 

columnar aerosol loading. This is a result of the complex and non-proportional relationship between AOD and surface PM2.5, 640 

and as well as the large uncertainty in MODIS AOD measurements.   
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